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RNA matrix models with external interactions and their asymptotic behavior
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We study a matrix model of RNA in which an external perturbation on n nucleotides is introduced in the
action of the partition function of the polymer chain. The effect of the perturbation appears in the exponential
generating function of the partition function as a factor exp(1 —na/L) (where « is the ratio of strengths of the
original to the perturbed term and L is the length of the chain). The asymptotic behavior of the genus
distribution functions as a function of length for the matrix model with interaction is analyzed numerically for
all n=L. It is found that as na/L is increased from 0 to 1, the term 3% in the number of diagrams ai,gﬂ ata
fixed length L, genus g and a, goes to 2= [(3—"%)" for any na/L] and the total number of diagrams N, ata
fixed length L and « but independent of genus g, undergoes a change in the factor exp(VL) to 1 (exp[(1
—nal/L) \Z] for any na/L). However the exponent L of the dominant length dependent term in “1/‘, a.a SIYS
unchanged. Hence the universality is robust to changes in the interaction («). The distribution functions also

exhibit unusual behavior at small lengths.
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I. INTRODUCTION

Understanding of the process of RNA folding finds its
ultimate use in the prediction of the fully folded, partially
folded, and completely unfolded structures under physiologi-
cal conditions [1]. Under these conditions, unfolding is a
very slow process as compared to folding in the presence of
a force. Application of a force increases the unfolding rate
and we can therefore get the unfolded structures from the
folded ones ([1] and references therein). Experimental tech-
niques of force-induced measurements have proved success-
ful in probing properties related to different aspects of RNA
folding and unfolding, domain unfolding in proteins, in
polysaccharides and nucleic acids ([2] and references
therein). Over the years, optical tweezers and atomic force
microscopy techniques have been employed to study the
physical, elastic, and structural properties of the biomol-
ecules by recording their force extension curves and studying
the force-dependent dynamics and folding landscapes of the
molecules ([3-9] and references therein).

Mechanical unfolding and refolding of single RNA has
been studied using force-ramp, hopping, and force-jump
methods ([10] and references therein). In mechanical unfold-
ing experiments, it has been observed that at a critical value
of the applied force, the hairpin structure toggles between the
folded and the unfolded states [11-13]. In these experiments,
the ionic concentrations play an important role. Ions
(monovalent and divalent cations), specific proteins, and
ligands are known to affect the stability of RNA structures
and govern the transitions from the intermediate (secondary)
to native folded (tertiary) states. The effects of ion-RNA in-
teraction depend upon the environment which varies with the
size of ions and their distance from the RNA molecule
[14-16]. Experiments of Bustamante er al. [12,13] have
shown that the denaturation of RNA by a constant force in-
volves multiple trajectories (for RNA hairpins and Tetrahy-
mena thermophila ribozyme) while undergoing a transition
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from the folded structure state to the unfolded state. These
trajectories depend on the point at which the force is applied
[1,17]. This diverseness in the folding-unfolding pathways is
due to the rugged energy landscape of RNA (consisting of
many minima). In these experiments, the RNA molecule is
usually clamped at one end and the force is applied at the
other end of the polymer. Extensions in the molecule are
studied with respect to a varying force. The external force in
experiments may be introduced into the random matrix mod-
els of RNA [18,19] by adding complicated potentials to the
action of the partition function. We consider here (theoreti-
cally) the case where a simple external perturbation acts on a
fixed number of nucleotides. The elongation of RNA in the
model is done by adding a base and we calculate some of the
extension properties with respect to the external perturbation.
Important theoretical studies have been carried out for RNA
under tension [20,21] in other statistical models.

We study here the effect of an external perturbation on the
random matrix model of RNA folding in [18,19]. The model
in [18,19] makes a correspondence between the Feynman
diagrams and the graphical representation of real RNA struc-
tures (both secondary and tertiary, originally noticed in [22]
for secondary structures only). Random matrix theory pro-
vides an analytic method to take into account the tertiary
structures in addition to the planar structures in a natural
way. We discuss very briefly a generalization of the random
matrix model of RNA with external interaction (a topological
model) proposed in [23], where the external perturbation acts
on a single nucleotide and on n nucleotides, n=L, L being
the length of polymer chain. We will refer to these models as
1-NP RNA model and n-NP RNA model, respectively (NP is
nucleotide perturbation).

We outline in Sec. II the extended matrix model (with
interaction) of [23] for completeness and understanding and
introduce the 1-NP and n-NP RNA models. Further we
present a detailed numerical analysis of the asymptotics of
the genus distribution functions for the extended matrix
model of RNA with perturbation [23] in Sec. III. The genus
distribution functions: the total number of diagrams at a fixed
length L but independent of genus g, A and the number of
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diagrams at a fixed length L and genus g, a; , of the matrix
model of RNA in [19] are found to change in the presence of
an external perturbation. We extend the numerical
asymptotic analysis to the n-NP RNA model as well.

II. EXTENDED MATRIX MODELS OF RNA

We review here the matrix model with a perturbation in
the action of the partition function studied in [23]. The par-
tition function is

1
AL(N)

L
ZL,a(N) = 1—.[ d¢l
i=1

L
Xexp[— %]E (Vhl)i,jTr ¢i¢j]

ij=1
L L L
XeXp[—NE (W), Tr d’i] ]T]Tr [Ta+¢).
i=1 =1
(1)

where ¢; are i=1,...,L independent (N X N) Hermitian ma-
trices at each nucleotide position ¢ in the chain,
exp[-N=L, (W) Tr ¢,] is the perturbation term with W;
the strength of perturbation on nucleotide at position i and
V;; is the matrix element of a (LXL) symmetric matrix
giving the interactions between the L nucleotides at positions
i and j in the polymer chain (H bonds formed between
any two nucleotides saturate). The observable II;(1+ ¢;)
is an ordered product over ¢;’s which ensures that the
diagonal elements do not appear in V. The normali-
zation constant in the partition func-
tion is A (N)=[TI[,d¢; exp[-N/2Z},_ (V7)) Tr dip;]
Xexp[-NZL (W), Tr ¢,;]. We make the following simplifi-
cations in the model: (i) any type of base pairing is allowed
with all the pairing probabilities the same and equal to V;;
=v, i.e., no specificity toward Watson-Crick or Wobble pair-
ings and (ii) the polymer chain is assumed to be infinitely
flexible. In the matrix model of RNA, N is analogous to the
role played by chemicals such as Mg?* in a solution to sepa-
rate secondary and tertiary structures of RNA [18]. The in-
teraction energies between the pairs of bases in the nearest-
neighbor models [24] can be taken into account in these
RNA matrix models by using a more complicated interaction
matrix V [18]. We consider W;,=w where w gives the strength
of the perturbation which is the same on all nucleotides in
the chain. After carrying out a series of Hubbard Stratonov-
ich transformations, the integral over L matrices ¢; in Eq. (1)
reduces to an integral over a single (N X N) Hermitian matrix
g,

1
R.(N)

Z; o(N) = J do exp[— N/2v Tr(v/w + 0)?]

X ]%]Tr(l + o)k, (2)

where R;(N)=fdo exp[-N/2v Tr(v/w+0)?]. Following the
algebra in [23] [from Eq. (5) to Eq. (15)], the exponential
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generating function G(¢,N,a) of the partition function
ZL,a(N) iS

G(t,N,a)= 2 7, a(N)i
=0 L

lN—l N 2 Nk
=exp[vt2/2N+ 11 - a)]|:;72 (k+ 1 )](Ctyl;\)lk ’
k=0 :

3)

where a=ﬁ gives the ratio of strengths of the quadratic to
the perturbed term in the action of the partition function [Eq.
(D]-

For a=0, i.e., no external perturbation we have the ran-
dom matrix model in [19] where we get all the structures.
However, for =1, i.e., when the strengths of base pairing
interactions and applied perturbation are the same, it is ob-
served that the partition function for odd lengths of the poly-
mer chain vanishes completely. At this particular value of the
applied external perturbation, the effect on the partition func-
tion is drastic. In the extended matrix model with interaction,
each unpaired base of the polymer chain in the contact dia-
grams is weighted by a factor (1-a) which becomes zero
when a=1 thus removing structures with any unpaired bases
at that length. We therefore have two regimes: (i) 0=a<1
comprising of both the unpaired and paired base structures
and (i) @=1 where structures with only fully paired bases
remain. After incorporating the simplifications, the effect of
the external perturbation appears on the free bases of the
polymer chain only. The genus distributions for the extended
matrix model in [23] exhibit interesting features for different
a’s.

The RNA random matrix model with interaction requires
a number of simplified assumptions in order to make the
calculation tractable for studying the effect of external per-
turbations. This simplified model for RNA studies effects
induced by the perturbation on the folding. The most impor-
tant feature of this matrix model of RNA folding is the to-
pological information that it contains which is important
since the problem of RNA folding is topological in nature.
Even in the absence of factors which constrain the formation
of RNA structures, for example, finite flexibility of the chain,
geometric, and steric constraints, we expect some topological
properties found in these models to be true for real RNAs. In
[25] it was found for the RNA matrix model and the real
RNA sequences that the average genus of the possible struc-
tures for a given length L depends linearly on the length.
Loop entropy and loop statistics have also been found to play
an important role in determining the possible conformations
and assessing RNA stability [26,27]. The inclusion of en-
tropy (loop entropy) is nontrivial in these matrix models. An
exciting future direction is to calculate the loop entropy in
matrix models of RNA. A proposal which includes entropy
in the matrix model of RNA is described in [28] which ex-
tends the models to multimatrix field theory models of RNA.

A. Extended matrix model of RNA with perturbation
on a single base (1-NP) and r bases (n-NP)

We now consider a generalization of the matrix model
with interaction proposed in [23] by adding a perturbation to
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a single nucleotide in the polymer chain [Eq. (1)]. Thus we
will consider W;=W, only (1-NP). The motivation comes
from the force-induced experiments in obtaining important
characteristics of folding and unfolding of RNAs discussed
in the introduction [1-13,17]. We keep all the assumptions
the same as for the model in [23] discussed above.
The interaction partition function Z; ,(N) will be given
by Eq. (1) with the perturbation term now
being exp[-N(W™'),Tr ¢,] and the normalization constant
given by A, (N)=[IL d¢, exp[—N/ZEfi:](V‘l),»’jTr oo
Xexp[-N(W™1),Tr ¢,]. Carrying out a similar mathematical
analysis employed in going from Eq. (1) to Eq. (3) above, we
can write the exponential generating function of the partition
function as in Eq. (3) with a/L in place of a. The partition
functions Z; ,(N) for different L can be found exactly from
the exponential generating function by equating the coeffi-
cients of powers of ¢ on both the sides of the equation. The
structures in the extended matrix model for perturbation on a
single nucleotide can be divided into the two regimes: (i) 0
= % <1 having structures with a combination of paired and
unpaired bases and (ii) =1 comprising of only the com-
pletely paired base structures. In general, if the number of
nucleotides with the perturbation is n where n =L, the sum
in the interaction term goes from i=1,...,n, then « in Eq.
(3) is replaced by “* (this gives the n-NP RNA matrix
model).

The lesson learnt for this simple, do-able, interaction is
that the interaction distinguishes in the Feynman diagrams
(structures of RNA) the paired and free bases by assigning a
weight (1-"7) to the free bases and 1 to the paired bases.
The important point to note is the dependence of the weight
on L.

III. ASYMPTOTICS OF THE EXTENDED MATRIX
MODELS FROM NUMERICS

The asymptotic behavior (large L) of the genus distribu-
tion functions for the matrix model of RNA in [19] showed
universal characteristics. We investigate here numerically the
changes that the genus distribution functions: (i) the total
number of diagrams at a fixed length L but independent of
genus g, NV [defined as N'=Z;(N=1)] and (ii) the number of
diagrams at a fixed length L and genus g, a;, [defined
through ZL(N)=Z;°=OaL,gﬁ], of the model in [19] undergo
when a perturbation is added. The asymptotics of the genus
distribution functions are computed for the extended matrix
model (i) when the perturbation is on all the bases, n=L [23]
and (ii) when perturbation is on n bases, n-NP. We will rep-
resent the genus distribution functions for the different ma-
trix models as follows: (i) N and a;, will represent the
asymptotic formulas for the model in [19], (i) 7, and a; , ,
will represent the new asymptotic formulas for the matrix
model of RNA with interaction [23], and (iii) NV, and a; , ,
will represent the numerical values of the genus distribution
functions for different a’s for the extended matrix model.

We start with the asymptotic expressions of [19],
(i) N=LY2exp[-(L/2)+VL-(1/4)]/N2 and (i) ag,
=k 3108732 where v=1 and k,= m, and find the
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FIG. 1. (Color online) (a)—(e) Plots of the natural logarithm of
the asymptotic formula In(V) in [19] (red dotted curves) and the
numerically calculated In(\,) values (black boxed curves) for a
=0, 0.25, 0.5, 0.75, and 1 for different lengths L. (a’)—(e’) The
natural logarithm of the new asymptotic formula In(\}) (red dotted
curves) for the extended matrix model of RNA [23] is plotted along
with the numerical In(\,) values (black boxed curves) for a=0,
0.25, 0.5, 0.75, and 1 for different lengths L.

asymptotic formulas \,, and a; , , for the matrix model with
interaction for lengths up to L=40, «=0,0.25,0.5,0.75,1,
and n=L.

A. Asymptotics for A/,

Figures 1(a)-1(e) show the combined plots of the natural
logarithm of the asymptotic expression A (red dotted curve)
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TABLE 1. Table lists, for different values of «, slopes of the
linearly fitted plots before and after the multiplication of (1-a)
with the VL term for (1) [ln(N L+ 2:| versus L In(L) (slope 1),
(ii) [ln(/\/) (1 a)\L+2] versus L 1In(L) [slope 1(a)], (iii)

[ln(/\/a) \L -L In(L)] versus L (slope 2) and (iv) [In(N,)—(1
—a)xL L ln(L ] versus L [slope 2(a)].
a Slope 1 Slope 1(a) Slope 2 Slope 2(a)
0 0.499 0.499 -0.5026 -0.5026
0.25 0.4885 0.499 —-0.5353 -0.5022
0.5 0.4767 0.4987 —-0.5683 -0.5027
0.75 0.4624 0.4981 -0.6025 -0.5060
1 0.4556 0.5003 -0.6331 -0.4992

with the natural log of the numerically computed N, values
for @=0,0.25,0.5,0.75,1 (black boxed curves) in the ex-
tended matrix model. It is observed that as « is increased
from O to 1, the black boxed curves shift downward continu-
ously indicating an « dependence in N, for the extended
matrix model of RNA. We investigate this dependence in the
following numerical analysis.

Taking natural log of N we get ln(./\/)~-ln(L) -+\L
—-—ln( \2). We are interested in the large length (L) behav-
ior and we see that the dependence of In A on L is strongest
in L In(L). We linearly fit the plots (i) [In(N,) - \’L+2] ver-
sus LIn(L) (slope 1, Table I), (ii) [In(N, )—\"L 10 ()]
versus L (slope 2, Table I), and (iii) [In(N,) +—— >L In(L)]
versus VL (Fig. 2) for different « and find their slopes In the
linearly fitted plots of (i) and (ii), we find that there is a
continuous decrease in the slope as a goes from 0 to 1
strongly suggesting a dependence of A, on a. In the fitted
plots of (iii) we observe a remarkable behavior for a=0.75
and a=1 plots. In the a=0.75 plot [Fig. 2(d)], the points for
odd and even lengths separate out into two very distinct
curves at small lengths and for the a=1 plot [Fig. 2(e)], the
odd length points vanish completely leaving only the even
length points in the figure. This indicates that [In(N, )+-
——L In(L)] versus VL is very sensitive to changes in a.

We put a factor (1 —a) with the VL term in the exponent
of the N expression and then fit the plots: (i) [In(N,)—(1
—a)\L+ 2] versus L In(L) [slope 1(a), Table I] and (ii)
[In(N,) - (1-a)VL- L In(L)] versus L [slope 2(a), Table I]
for different values of a. We observe that now all the slopes
are nearly the same and equal to +% and —% for (i) and (iiL
respectively. This proves that the factor (1—«) with the VL
term in the exponent of A is the correct choice. We can
therefore write the new asymptotic expression of the total
number of diagrams at a fixed length L and « but indepen-
dent of genus g, N/, for the matrix model with perturbation
for n=L as

N, =L exp[- L2+ (1 - )L - 14132, (4)

We see from Eq. (4) that the total number of structures for
the extended matrix model changes considerably, for ex-
ample, when a=1 the VL term vanishes from the exponent.
We repeat the exercise as before and plot the natural loga-
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(slope=0.9818), (b) @=0.25 (slope=0.7359), (c) a=0.5 (slope
=0.4926), (d) a=0.75 (linear fit to the two curves gives slope
=0.3595), and (e) a=1 (the plot is not linear).

rithm of the new asymptotic formula ), (red dotted curves)
for the matrix model of RNA with interaction given by Eq.
(4) together with the natural log of numerically obtained N\,
values (black boxed curves) for different «’s, Fig.
1(a’)-1(e"). The plot for the new asymptotic formula coin-
cides with the numerical data A, confirming the new for-
mula.

B. Asymptotics for a4 o

The natural logarithm of the asymptotic formula a; ,
(black dotted curve in Fig. 3) plotted together with the natu-
ral log of the numerically calculated a; ,, values (green
boxed curve) for different o’s (shown here for a=0.75, for
a=0, 0.25, 0.5, and 1 we get similar figures) in the extended
matrix model clearly indicates that the asymptotic formula of
the model in [19] needs to be changed to give the asymptotic
behavior of the matrix model of RNA with external interac-
tion [23]. The green boxed data curves move further and
further away from the black dotted a; , curve [19] as « goes
from O to 1. This behavior is studied and the correct
asymptotic expression a,"’ ¢.o for the extended matrix model is
found.

We start with the asymptotic expression of ay,
=k,3+L3¢3?)_ Taking In on both the sides and fixing g=1 we
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FIG. 3. (Color online) The natural logarithm of the asymptotic
formula In(a,,,) [19] (black dotted curves) is plotted together with
the numerical In(a, , ,) values (green boxed curves) for @=0.75 for
different lengths L. Note: The figure plots In(ay , ,)’s for all genii
corresponding to a particular length L of the polymer chain. The
lowest curve (black dotted or green boxed) corresponds to genus
g=0 for all the lengths (0 to 40) and the successive curves in the
upward direction correspond to next higher genii with the maxi-
mum genus given by g .=L/4.

get, In(ay ,.) ~In[5oas ) m\ ]+Lln(3)+ In(L). In In(ay4-y),
L dependence is present in the form of L and In(L). We are
interested in the large L behavior so we first look for the
dominant L dependence. The linear fits to the plots of
In(ay 4-1 o) versus L in Table II (slope 1) show that the slopes
of the numerical a; ,, curves for different &’s are not the
same and not equal to the slope of the a, , asymptotic curve
(slope should be In(3) according to [19], marked Analytical
in Table II). This indicates an « dependence in the factor 3 of
the 3~ universal part of ay, - We represent this dependence by
x(a) where x(a)=exp(slope 1) (Table II). We write the
asymptotic formula by replacing 3 with x(«). The expression
for aL o after taking In on both of the sides becomes
ln(al_g a) In(k,)+L In[x(a) ]+ (3g - )ln(L) To determine
the form of x(a) we plot x(a) versus a which is a straight
line with slope=—1.133 and intercept=3.466. In the same
way as the asymptotic expression for a; , in [19] had the
universal term 3%, we find x(a)” to be (3—a)* for all a. We
therefore have ln(ai,g’a) ~In(ky)+L In(3—a)+(3g— %)ln(L).

TABLE II. Table lists, for different values of «, the measures of
slopes obtained from the linear fits to the plots between L and
In(ay 4-1,4) (slope 1), the x(a) values for each « and slopes from the
linear fit of plots between In(L) and [In(ay 4 o)L In(3- )] for
each a (slope 2).

a Slope 1 x(a@) Slope 2
0 1.198 3.313 1.646
0.25 1.109 3.03 1.639
0.5 1.012 2.75 1.633
0.75 0.9065 2.476 1.623
1 0.7891 2.2 1.655
Analytical 1.24 3.4556 1.495
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FIG. 4. [In(ay, 4=y o)-L In(3—a)] versus In(L) plots for (a) a=0,
(b) @=0.25, (¢c) a=0.5, (d) @=0.75, and (¢) a=1. The slopes for
these values of « are listed in Table II (slope 2).

The dominant term in the asymptotic form of a; ,, 3%, [19]
changes to (3—a)’ for the matrix model with interaction
[23]. The asymptotlc formula thus gets modified to a; , ,
~k (3 a)LL 3g-3/2)

Analyzmg the ln(L) dependence now, we assume that
there exists an « dependence in the exponent of L which we
represent by f(«). We can therefore write from a; , , after
taking In on both the sides and substituting g=1,
In(a; oy o)~ In(3zmym ) +L In(3—a)+3[f(@)]in(L). Linear
fitted plots of [In(a; ., ,)—L In(3—a)] versus In(L) for dif-
ferent a values are shown in Fig. 4. The figure shows a
continuous separation of data points belonging to the even
and odd lengths as « is increased from O to 1. There are two
distinct lines of data points at small lengths L which merge
into a single line at higher lengths L. For @=1 the odd length
points vanish completely from the plot. The slopes (Table II,
slope 2) show that the difference between analytical and nu-
merical values for different « is ~0.01, which is small. The
In(L) term therefore shows no significant a dependence. So
we fix f(a)=1. This gives the asymptotic formula of the
number of diagrams at a fixed length L, genus g and «, aLg’a
for the matrix model of RNA with perturbation for n=L to be

ai,g,a ~ko(3 - )LL) )

The natural logarithm of the asymptotic formula (black
dotted curve), Eq. (5) thus obtained is plotted together with
the natural log of numerical a, , , values (green boxed curve)
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FIG. 5. (Color online) The plot for the natural logarithm of the
new asymptotic formula, ln(aLg’ ) (black dotted curve) for the ex-
tended matrix model of RNA is shown together with the numeri-
cally obtained In(ay 4 ,) for @=0.75 (green boxed curve) as function
of In L.

for different a’s (Fig. 5, shown here for only a=0.75, similar
figures are found for «=0,0.25,0.5,1) and it is seen that the
formula matches with the numerical results for large L. To
verify the final form of the formula, we substitute different
a’s and g=1 in Eq. (5) and plot [ln(ai‘gzl’a)—L In(3-a)]
versus In(L). The slopes are found to be 1.495 in all the
cases. This result will hold for any genus g, though we have
shown here the result for only g=1. It is interesting to note
here that in a;, ¢.o for the extended matrix model, the univer-
sal term changes from 3% in [19] to 2X when a goes from 0 to
1, the completely paired base region. Other statistical models
of pseudoknots in RNA [29-31] have studied combinatorial
and statistical properties such as the number and fractions of
pseudoknot structures. In particular a graph theoretic ap-
proach toward the combinatorial problem of RNA structures
with pseudoknots shows that the number of bisecondary
structures  (secondary  structures  with  non-nested
pseudoknots) grows asymptotically as ~(8)" where B is a
combinatorial factor and L is the length of the chain [29]. In
the matrix model with interaction discussed here we find that
the dominant length dependence in the asymptotic behavior
of the number of structures a; , , goes as (3—a)".

The asymptotic behavior of a; ; ,, and N, , for the model
with perturbation on n bases is the same as for the model
with n=L except that « is replaced by % [as is evident from
the discussion in Sec. II A, the expression of the exponential
generating function G(¢,N,a) given by Eq. (3) with * in
place of «]. Thus we can write the asymptotic expressions of
the genus distribution functions for a perturbation acting on n
bases as

L
’ na ~
ArLgan™ kg<3 - T) 1.3¢-312) ©)

and

N, = L2 expl= L2 + (1 = na/LNL - 1/4)32. (7)

PHYSICAL REVIEW E 79, 061903 (2009)

40

0 LR
ey by s

0.25" LG
L

L

(a) Ol 0.75

Y720, % 25 y/20T |
. LR
L
0.5 L) 10

.' (b) oL 0.75 n,

FIG. 6. (Color online) The figure plots natural logarithm of the
genus distribution function 4, , , [represented by (a) in the figure]
at a fixed genus, g=1 for (a) n=1 and (b) n=L by varying « and L.
It is seen that for n=L, the slope changes gradually from In(3) to
In(2) as a is increased from 0 to 1 while the linear dependence on L
stays unchanged.

The asymptotics of the genus distribution functions [Egs.
(4)—(7)] for the matrix model with external interaction there-
fore show marked changes in the presence of the perturba-
tion from a; , and N of the model in [19].

An important lesson learnt from this exercise is that the
dominant term in the asymptotic, large L behavior of the
number of diagrams a; , , at a fixed L, g and a is (3-"F)"
with the same exponent L. Thus the universality is preserved
on introduction of interactions (see Fig. 6). A change may
occur for other interactions.

IV. CONCLUSIONS

In this work, we develop on the footsteps of the matrix
model of RNA with interaction proposed in [23], the effect
of an external perturbation on a single nucleotide. We argue
that « in the exponential generating function of the partition
function, Eq. (3) will be replaced by 7. Further, we general-
ize this result to a finite number n = L of perturbations on the
nucleotides where « in the exponential generating function
of the partition function gets replaced by na/L [in Eq. (3)].
The parameter space (« and n) of the model can thus be split
into two regimes as: (i) 0=a=1, n<L and 0=a<1, n
=L consisting of structures with a combination of paired and
unpaired bases and (ii) a=1, n=L comprising of only the
fully paired base structures. We find numerically for the ma-
trix model with interaction that the average genus varies lin-
early with the length of the polymer chain as L/4. The effect
of introduction of this external perturbation changes the
weight of the free bases [by (1-"7)] in the chain while the
paired bases remain unaffected compared to [19]. Though the
model is limited by the exclusion of factors such as stacking
energies, it takes into account effectively the perturbation-
induced changes on both the planar and secondary structures
with pseudoknots (i.e., the tertiary structures). In the matrix
models of RNA, we find the number of pseudoknots and
their fraction out of the total possible conformations for a
given length of the polymer chain from the partition function
of the model.

We find numerically the asymptotic behavior of the genus
distribution functions for the matrix model of RNA with in-
teraction in [23] and the n-NP model. The numerical analysis
shows that the term 3% in ay ., found in [19], changes to (3
—a)* when n=L [which becomes (3—"%)" when the pertur-
bation is on n bases]. The power law term L3¢32) in agg
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[19] remains the same for the asymptotic formula a, , , in
the matrix model with perturbation for n=L [23] and for any
n<L. The total number of diagrams N also changes to j\_fl’x
=L"? exp[-L/2+(1-a)\L-1/4]/ V2 with the term exp(yL)
in NV'[19] going to exp[(1-a)yL] for n=L (which becomes
exp[(1-na/L)VL] when n=L). The most striking change
found in a; , , is when « takes the value 1 (and n=L) as the
slope changes from In(3) to In(2) (see Fig. 6) and in the (1
—a)VL term in the exponent of A/, which goes to zero. It is
shown in Figs. 2 and 4 that as « is increased from O to 1 in
steps of 0.25, the points corresponding to even and odd
lengths of the chain start splitting up into two different
curves at small lengths, but converge into a single linear
curve as the length is increased. At small lengths, this differ-
ence is most pronounced for @=0.75, for both A, and ar g o
The a=1 plots of NV, and a;,, [Fig. 2(¢) and Fig. 4(e),
respectively] show the absence of odd length data points. It
is interesting to note that the genus distributions show differ-
ent behavior at small and large lengths. This result is novel to
matrix models of RNA with interactions. The large L
(asymptotic) behavior of the distribution functions [Egs.
(4)—(7)] found for the RNA matrix model with external per-
turbation shows interesting changes.

The main outcome of this exercise is that the introduction
of interactions in this simple random matrix model of RNA
allows us to study the effect of interactions on the genus
distribution functions as a function of the length. We find a
result for the exponential generating function Eq. (3) which
changes the singularity structure of the model (details will be
reported elsewhere). This produces a change in the
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asymptotic form for the genus distribution functions which
has been derived here using very simple graphical analysis.
However the exponent L in (3 - %)™ of the genus distribution
function a; , , remains unchanged. Hence the universality is
robust to the change in interaction (« values, Fig. 6). This is
an exciting theoretical prediction. It would be very interest-
ing to look for RNAs with interactions (acting on a single
base or n bases) considered in this work and explore the
challenging question whether the universal results reported
here for the genus distributions (even though the results are
true for simple homopolymers with interactions) can be re-
produced in the experiments.

In order to make contact between the results of the matrix
model with the pulling experiments we note that as the dis-
tribution functions are given as functions of the length (Figs.
1-6 and [23]), information about which structures, a struc-
ture at a certain length and genus can go to, under extension
can be made. In other words, the fraction of planar and
pseudoknot structures at different lengths can be found. This
is very useful for the stretching experiments. Further more
complicated interactions may need to be considered in the
potential for explicit comparison with the experiments and
this is a goal for the future.
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